Поделки из поршней и шатунов

Поделки из поршней и шатунов

Поделки из поршней и шатунов


Поделки из поршней и шатунов

Поделки из поршней и шатунов

Часто звучит мнение — а зачем нам паровую машину изобретать? Давайте сразу паровую турбину!

Там деталей всего — колесо с лопатками и клапан выхода пара — регулировать мощность можно элементарно. Нет ни поршней (для которых точность изготовления — это КПД), нет ни шатунов из которых смазка летит и которые всю машину разбалансируют, и которые в первую очередь разрушаются, если машина пойдет в разнос. Не нужно также сложного устройства ограничения скорости оборотов, с маятниками и клапанами. Нужно просто прийти к Уатту и открыть ему глаза, ибо «а пацаны-то и не знают».

Хочу вас разочаровать. Пацаны знали.

Во-первых, не следует думать, что в те времена машины строили на ощупь. Уже все рассчитывалось до винтика. Для интересующихся есть , самые старые книги — 1805 год. Как для попаданца в средневековье, то взятая оттуда «Cyclopedia of Engineering» 1910 года (в шести томах) была бы просто спасением, сейчас на эти темы так книги не пишут. Нас интересует второй том, где речь идет про паровые турбины.

Во-вторых, почему-то мы сейчас решили, что во времена, когда внедряли паровую машину, никто не знал о турбине. Знали. И знал сам Джеймс Уатт. И даже более того — его про турбину спрашивали: а не угрожает ли турбина изобретенной им паровой машине? На что он ответил: «О какой конкуренции может идти речь, если без помощи Бога нельзя заставить рабочие части двигаться со скоростью 1000 футов в секунду?»

Попытаюсь объяснить, почему он так ответил.
Но сначала — о том, чего он не знал (и что знаем мы). Мы знаем сопло Лаваля. Это всего лишь форма сопла, из которого выходит пар, что крутит лопатки турбины. У него есть одна особенность — пар выходит с очень большой скоростью, быстрее скорости звука. Для сопла турбины — чем выше скорость, тем больше из потенциальной энергии давления переходит в кинетическую энергию, которая нам и нужна.

Но для того, чтобы кинетическая энергия движущегося пара эффективно передалась лопатке турбины, та должна двигаться со скоростью, равной половине скорости пара. Лопатка у нас — часть колеса и нас интересует ее линейная скорость. Чтобы ее линейная скорость была высокой, а количество оборотов низким — нужно строить турбинное колесо большого диаметра. Так и было — диаметр в 3 метра был нормальным решением. Но все равно, даже при этом диаметре количество оборотов зашкаливало (скорость пара ведь сверхзвуковая!). Для паровой турбины 2000-3000 оборотов в минуту — это самое начало веселья, хотя паровая машина лучше всего себя чувствует при 100-300 оборотов в минуту.
И вот эта дикое количество оборотов и закрыло доступ турбине во многие области. Но это количество оборотов — не единственный недостаток.

Паровая турбина в принципе дает бОльшую мощность, чем паровая машина. Именно поэтому на кораблях ее и использовали. Но эта мощность доступна только на высоких оборотах. В отличие от классического паровика, где крутящий момент близок к максимальному уже с нуля оборотов. Ведь как заставить тронуться турбо-паровоз с вереницей вагонов? Это когда поедет — то поедет быстро, а как с места тронуться? Делать сцепление для паровоза? Так там такой ломовой крутящий момент, что эта задача не решена до сих пор. Тепловоз трогают электродвигатели, которые тянут на полную с нуля оборотов. В 60-70х годах в СССР была попытка построить гидротрансформатор для тепловоза (то есть, если говорить по автомобильному — коробку-автомат). Не получилось. Хотя в Германии несколько серий тепловозов с «автоматом» использовали, но это были слабенькие маневровые локомотивы.

Далее — вопросы к КПД. Оно в турбине также зависит от количества оборотов. Сейчас на корабли ставят газовые турбины, но параллельно с ними — дизельные двигатели, чтобы с вменяемым расходом топлива плавать на малом ходу.
Но и все равно — расход топлива у любой турбины велик. Хотя в применении именно к паровой турбине эту проблему удалось решить: ставили не одну турбину, а какскад — высокого, среднего и низкого давления. Пар из котла проходил последовательно три турбины, отдавая все до капли, после чего конденсировался и шел в виде теплой воды обратно в котел.
Но вы точно уверены, что такая схема будет проще обычной паровой машины? Точно уверены?

К тому же — чистые турбины на корабле ставили редко. Турбина тройного расширения — это прерогатива военных линкоров, где с расходами не считались. Если же взять тот самый «Титаник», то у него два гребных вала крутили паровые машины, отработанный пар из которых шел в турбину низкого давления, крутящую третий (средний) вал. Практика показала — это лучший компромисс.

Следующий недостаток — инертность. Это свойственно всем турбинам. Сейчас, в реактивном самолете, проходит 6-8 секунд между передвижением ручки управления двигателем и моментом, когда двигатель выйдет на максималку. А представьте, что у вас железная турбина три метра диаметром, да еще и трехконтурная? Я не знаю сколько времени она выходила в рабочий режим, но вряд ли меньше 20 секунд. Для наземных видов транспорта параметр критичный.

Но нельзя сказать, что у турбины нет плюсов. Они есть. Во-первых — это очень большая мощность. Турбины строили мощность чуть ли не по 50 тыс. лошадиных сил, обычному паровику это и не снится. Далее — конструкция турбины действительно выходит куда более надежной, чем кривошипно-шатунный механизм, который просто разбалтывается. Это не раз доказывали корабельные турбины, служившие без перебирания десятками лет.

Однако, вернемся к Джеймсу Уатту. Что конкретно ему не нравилось в турбине?
Он же имел все расчеты и конкретно знал — что такое турбина и с чем ее едят, пусть даже и теоретически.
Ответ очень простой — Уатт обязательно нашел бы применение паровой турбине, если бы смог ее построить.
По его расчетам, при таких больших оборотах и таком размере колеса турбины — металл времен Уатта не сможет сохранить целостность колеса, центробежные силы его порвут. Да, собственно, и современный тоже…
Но это было даже не главное. Когда появились первые паровые машины, еще не существовало резьбового соединения в технике. Именно производство болтов для паровиков заставило Нартова придумать токарный станок с суппортом, который поначалу так и назывался — «винторезный». Уже потом он усовершенствовался (станок Модсли, 1798 год) и на нем стали точить детали куда более сложной формы — и технологии пошли на следующий виток. И главное — на таком станке уже можно было точить изделия из стали, а не только медные и латунные.
В реальности винты со стандартной гайкой появились именно после 1800 года, благодаря как раз Модсли. До этого — конкретная гайка подходила только к конкретному болту и ни к какому больше. Представили себе производство из таких «самостоятельных» деталей?

Паровую турбину невозможно сделать без токарного станка по стали. Более того — эти токарные станки должны были сделать несколько витков эволюции, чтобы достичь необходимой точности. Неудивительно, что корабль «Турбиния» свою хулиганскую выходку сумел устроить только в 1897-м, когда он нагло вклинился в гонки быстрейших миноносцев на королевском смотре в Спитхейдском рейде, и в присутствии королевы легко сделал их всех! «Турбиния» разогналась до 32 узлов, при максимальной скорости самого быстрого миноносца в 24 узла. И именно первая работающая турбина — это и был двигатель «Турбинии» изобретения Парсонса. При этом, как я подозреваю, Парсонс специально выбрал для установки турбины старый баркас ниразу не гоночного вида, чтобы усугубить расталкивание строя Royal Navy в день 60-летия королевы Виктории — в присутствии ее самой, Принца Уэльского и иностранных гостей. Вот были же тролли в старое время, не то, что нонешняя мелочь! Снимаю шляпу!

Парсонс решил две основные проблемы, без которых турбина не получалась.
Во-первых — уменьшил скорость оборотов турбины, сделав ее продольной, и пар проходил 15 ступеней вдоль ее оси, постепенно расширяясь. Но все равно — даже такое решение в первых образцах дало не меньше 18 000 оборотов в минуту. Это было достижение! Такое количество оборотов мало где можно использовать, но турбина хотя бы работает, а не разрушается от нагрузок в металле! Конечно, в «Турбинию» встал уже доделанный образец, со сниженными в несколько раз оборотами.

Во-вторых — проблема «биения вала». Каждый вал имеет собственную частоту поперечных колебаний. Когда частота его вращения совпадает с этой частотой — возникает резонанс и вал идет вразнос. Для паровика с его медлительностью это заметно не было, а вот турбины — у них количество оборотов заведомо больше, чем резонансная частота любого вала. Чтобы это победить, Парсонс изобрел специальный подшипник, состоящий из набора колец двух разных диаметров, через которые винтовым насосом продавливалась смазка под большим давлением.

Я перечислил только самые большие проблемы. А там их было до кучи, чего только стоит специальный регулятор оборотов, потому что регулятор от паровика просто разлетался на части по всей мастерской.

И последнее — шестереночный понижающий редуктор, который мог бы переваривать такие обороты и крутящиеся моменты, смогли сделать только после 1920-го, когда он и появился на кораблях.

Поэтому вывод — если вы строите корабль или электростанцию — турбина будет как раз к месту. Ну или сепаратор для молока. В остальных случаях — с техническими проблемами турбин вам не справиться.

Итак, подведем итог и посмотрим что у нас в наличии.
Средневековье рассматривать не будем вообще. Попаданец очутился где-то в 18-м веке, паровики только зарождаются. Токарных станков по стали нет. Резьбовые соединения — пока в мечтах, все, что не клепается —  соединяем болтающимися шпильками и фиксируем клиньями. Точность обработки… Ну, монетка между цилиндром и поршнем паровика пролезет (хорошая копилка, кстати — объем цилиндра немалый). Системы смазки с винтовым насосом (да даже шарикоподшипника) мы ведь тоже не имеем. И мы для начала должны ручным инструментом изготовить несколько тысяч абсолютно одинаковых лопаток. А напоследок — напильником собираемся отцентровать трехметрового диаметра кусок железяки, отлитый из фигового металла, чтобы он крутился со скоростью шпинделя современного HDD??  Ну-ну. Лично я при испытаниях такой турбины отойду подальше.

Ноябрь 10th, 2012 | Автор: | Метки: , | Категории:



Поделки из поршней и шатунов

Поделки из поршней и шатунов

Поделки из поршней и шатунов

Поделки из поршней и шатунов

Поделки из поршней и шатунов

Поделки из поршней и шатунов

Поделки из поршней и шатунов

Поделки из поршней и шатунов

Поделки из поршней и шатунов

Поделки из поршней и шатунов

Поделки из поршней и шатунов

Поделки из поршней и шатунов

Поделки из поршней и шатунов

Поделки из поршней и шатунов

Поделки из поршней и шатунов